Thursday, August 17, 2017 9:58 AM

Continuing with the blowd model...
We plot the results none-neally.

$$z = F(a) = \frac{X}{T}$$

For human red blowd cells, $T = 5$ days and
 $X = 120$ days. So, under normal circumstances.
the system is stable, since $\frac{X}{T} = 24$.

Basic diffusion

Diffusion is used to describe spread of porticles
through random mation.
In biology/social sciences/medicine, it
has been used to model
spread at a species
spread at a species
spread of a faroured genetic trait
propagation of ideas
Diffusion is connected to rondom walks.
Consider a 1-D space.
the step
$$\Delta x$$
 to the left or optimis one
time step Δt .
What is the probability $p(m, n)$ thet
on individual onnies at point max

at time not?

Method 1: Track individuals (Lagrangia approach)
A particle sets to point in by moving
a steps right and b steps left.
Assume min is even to convenience.
Then,

$$\begin{pmatrix} a-b=m, \\ a+b=n \end{pmatrix} \begin{pmatrix} a=\frac{n+m}{2}, \\ b=\frac{n-m}{2}. \end{pmatrix}$$

The probability of howing such a path is
 $p(m,n) = {n \choose a} {j \choose 2}^n = {j \choose 3}^n \frac{n!}{a!b!}$.
Using Staling's formula,
 $n! = (2\pi)^{1/2} n^{n+1/2} e^{-n}, n >>1,$
and many elgebraic menipulations
 $p(m,n) = (\frac{1}{2\pi})^{1/2} e^{-m^2/(2\pi)}, m >>1, n>1.$
Let $x=m \Delta x$, $t=n\Delta t$ and
 $u(x,t) = prob.$ density of being at point x at time t

Note that
$$p(m,n)$$
 is the prob. of finding the
individual in the interval $[X-\delta X, \delta+\delta X)$,
since $m\pm n$ has to be even.

Hence, p(m,n)

$$u(X, t) \sim \frac{\rho(m, n)}{2 \Delta X}$$

$$\sim \left(\frac{\Delta t}{2 \pi t (\Delta X)^2} \right)^{1/2} e_{X} \rho \left(-\frac{X^2}{2t} \cdot \frac{\Delta t}{(\Delta X)^2} \right)$$

$$\left(we \quad s = b s h h t e d \quad m = \frac{X}{\Delta X} , \quad h = \frac{t}{\Delta t} \right) .$$

If we assume

$$D = \lim_{\substack{\Delta X \to 0 \\ b t \to 0}} \frac{(\Delta X)^2}{2\Delta t} \neq 0$$
then $u(X, t) = \lim_{\substack{\Delta X \to 0 \\ b t \to 0}} \frac{p(m, n)}{2\Delta X} = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{X^2}{(4Dt)}}$

Thus, we have the recursion

$$u(x,t) = \frac{1}{2}u(x - \delta x, t - \delta t) + \frac{1}{2}u(X + \delta x, t - \delta t).$$

$$Taylor expanding, re get$$

$$u(x,t) = u(x,t) - \frac{\partial u}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} (\Delta x)^2 + o(\Delta t^2) + \cdots$$

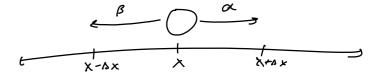
So,
$$\frac{\partial u}{\partial t} = \left(\frac{\Delta x^2}{2\Delta t}\right) \frac{\partial^2 u}{\partial x^2} + (higher order terms)$$

Defining
$$D = \lim_{\Delta X \to 0} \frac{(\Delta X)^2}{2\Delta t} \neq 0$$
 as before
at $\Rightarrow 0$

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} .$$

we can check that
$$u(x,t) = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}}$$

solves this equation.



0C+B=1

 $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + V \frac{\partial u}{\partial x}$